skip to main content


Search for: All records

Creators/Authors contains: "Dong, Jiajia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Csikász-Nagy, Attila (Ed.)
    The ubiquitous existence of microbial communities marks the importance of understanding how species interact within the community to coexist and their spatial organization. We study a two-species mutualistic cross-feeding model through a stochastic cellular automaton on a square lattice using kinetic Monte Carlo simulation. Our model encapsulates the essential dynamic processes such as cell growth, and nutrient excretion, diffusion and uptake. Focusing on the interplay among nutrient diffusion and individual cell division, we discover three general classes of colony morphology: co-existing sectors, co-existing spirals, and engulfment. When the cross-feeding nutrient is widely available, either through high excretion or fast diffusion, a stable circular colony with alternating species sector emerges. When the consumer cells rely on being spatially close to the producers, we observe a stable spiral. We also see one species being engulfed by the other when species interfaces merge due to stochastic fluctuation. By tuning the diffusion rate and the growth rate, we are able to gain quantitative insights into the structures of the sectors and the spirals. 
    more » « less
  2. Abstract

    Metabolic cross-feeding plays vital roles in promoting ecological diversity. While some microbes depend on exchanges of essential nutrients for growth, the forces driving the extensive cross-feeding needed to support the coexistence of free-living microbes are poorly understood. Here we characterize bacterial physiology under self-acidification and establish that extensive excretion of key metabolites following growth arrest provides a collaborative, inter-species mechanism of stress resistance. This collaboration occurs not only between species isolated from the same community, but also between unrelated species with complementary (glycolytic vs. gluconeogenic) modes of metabolism. Cultures of such communities progress through distinct phases of growth-dilution cycles, comprising of exponential growth, acidification-triggered growth arrest, collaborative deacidification, and growth recovery, with each phase involving different combinations of physiological states of individual species. Our findings challenge the steady-state view of ecosystems commonly portrayed in ecological models, offering an alternative dynamical view based on growth advantages of complementary species in different phases.

     
    more » « less
  3. Abstract Researchers have long examined the structure of animal advertisement signals, but comparatively little is known about how often these signals are repeated and what factors predict variation in signaling rate across species. Here, we focus on acoustic advertisement signals to test the hypothesis that calling males experience a tradeoff between investment in the duration or complexity of individual calls and investment in signaling over long time periods. This hypothesis predicts that the number of signals that a male produces per 24 h will negatively correlate with (1) the duration of sound that is produced in each call (the sum of all pulses) and (2) the number of sound pulses per call. To test this hypothesis, we measured call parameters and the number of calls produced per 24 h in 16 species of sympatric phaneropterine katydids from the Panamanian rainforest. This assemblage also provided us with the opportunity to test a second taxonomically specific hypothesis about signaling rates in taxa such as phaneropterine katydids that transition from advertisement calls to mating duets to facilitate mate localization. To establish duets, male phaneropterine katydids call and females produce a short acoustic reply. These duets facilitate searching by males, females, or both sexes, depending on the species. We test the hypothesis that males invest either in calling or in searching for females. This hypothesis predicts a negative relationship between how often males signal over 24 h and how much males move across the landscape relative to females. For the first hypothesis, there was a strong negative relationship between the number of signals and the duration of sound that is produced in each signal, but we find no relationship between the number of signals produced per 24 h and the number of pulses per signal. This result suggests the presence of cross-taxa tradeoffs that limit signal production and duration, but not the structure of individual signals. These tradeoffs could be driven by energetic limitations, predation pressure, signal efficacy, or other signaling costs. For the second hypothesis, we find a negative relationship between the number of signals produced per day and proportion of the light trap catch that is male, likely reflecting males investing either in calling or in searching. These cross-taxa relationships point to the presence of pervasive trade-offs that fundamentally shape the spatial and temporal dynamics of communication. 
    more » « less